WCPT poster: Introduction to machine learning in healthcare

It’s a bit content-heavy and not as graphic-y as I’d like but c’est la vie.

I’m quite proud of what I think is a novel innovation in poster design; the addition of the tl;dr column before the findings. In other words, if you only have 30 seconds to look at the poster then that’s the bit you want to focus on. Related to this, I’ve also moved the Background, Methods and Conclusion sections to the bottom and made them smaller so as to emphasise the Findings, which are placed first.

My full-size poster on machine learning in healthcare for the 2019 WCPT conference in Geneva.

Reference list (download this list as a Word document)

  1. Yang, C. C., & Veltri, P. (2015). Intelligent healthcare informatics in big data era. Artificial Intelligence in Medicine, 65(2), 75–77. https://doi.org/10.1016/j.artmed.2015.08.002
  2. Qayyum, A., Anwar, S. M., Awais, M., & Majid, M. (2017). Medical image retrieval using deep convolutional neural network. Neurocomputing, 266, 8–20. https://doi.org/10.1016/j.neucom.2017.05.025
  3. Li, Z., Zhang, X., Müller, H., & Zhang, S. (2018). Large-scale retrieval for medical image analytics: A comprehensive review. Medical Image Analysis, 43, 66–84. https://doi.org/10.1016/j.media.2017.09.007
  4. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
  5. Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200–205. https://doi.org/10.1016/j.procs.2016.07.014
  6. Ramzan, M., Shafique, A., Kashif, M., & Umer, M. (2017). Gait Identification using Neural Network. International Journal of Advanced Computer Science and Applications, 8(9). https://doi.org/10.14569/IJACSA.2017.080909
  7. Kidziński, Ł., Delp, S., & Schwartz, M. (2019). Automatic real-time gait event detection in children using deep neural networks. PLOS ONE, 14(1), e0211466. https://doi.org/10.1371/journal.pone.0211466
  8. Horst, F., Lapuschkin, S., Samek, W., Müller, K.-R., & Schöllhorn, W. I. (2019). Explaining the Unique Nature of Individual Gait Patterns with Deep Learning. Scientific Reports, 9(1), 2391. https://doi.org/10.1038/s41598-019-38748-8
  9. Cai, T., Giannopoulos, A. A., Yu, S., Kelil, T., Ripley, B., Kumamaru, K. K., … Mitsouras, D. (2016). Natural Language Processing Technologies in Radiology Research and Clinical Applications. RadioGraphics, 36(1), 176–191. https://doi.org/10.1148/rg.2016150080
  10. Jackson, R. G., Patel, R., Jayatilleke, N., Kolliakou, A., Ball, M., Gorrell, G., … Stewart, R. (2017). Natural language processing to extract symptoms of severe mental illness from clinical text: The Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project. BMJ Open, 7(1), e012012. https://doi.org/10.1136/bmjopen-2016-012012
  11. Kreimeyer, K., Foster, M., Pandey, A., Arya, N., Halford, G., Jones, S. F., … Botsis, T. (2017). Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. Journal of Biomedical Informatics, 73, 14–29. https://doi.org/10.1016/j.jbi.2017.07.012
  12. Montenegro, J. L. Z., Da Costa, C. A., & Righi, R. da R. (2019). Survey of Conversational Agents in Health. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2019.03.054
  13. Carrell, D. S., Schoen, R. E., Leffler, D. A., Morris, M., Rose, S., Baer, A., … Mehrotra, A. (2017). Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings. Journal of the American Medical Informatics Association, 24(5), 986–991. https://doi.org/10.1093/jamia/ocx039
  14. Oña, E. D., Cano-de la Cuerda, R., Sánchez-Herrera, P., Balaguer, C., & Jardón, A. (2018). A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. Journal of Healthcare Engineering, 2018, 1–19. https://doi.org/10.1155/2018/9758939
  15. Krebs, H. I., & Volpe, B. T. (2015). Robotics: A Rehabilitation Modality. Current Physical Medicine and Rehabilitation Reports, 3(4), 243–247. https://doi.org/10.1007/s40141-015-0101-6
  16. Leng, M., Liu, P., Zhang, P., Hu, M., Zhou, H., Li, G., … Chen, L. (2019). Pet robot intervention for people with dementia: A systematic review and meta-analysis of randomized controlled trials. Psychiatry Research, 271, 516–525. https://doi.org/10.1016/j.psychres.2018.12.032
  17. Jennifer Piatt, P., Shinichi Nagata, M. S., Selma Šabanović, P., Wan-Ling Cheng, M. S., Casey Bennett, P., Hee Rin Lee, M. S., & David Hakken, P. (2017). Companionship with a robot? Therapists’ perspectives on socially assistive robots as therapeutic interventions in community mental health for older adults. American Journal of Recreation Therapy, 15(4), 29–39. https://doi.org/10.5055/ajrt.2016.0117
  18. Troccaz, J., Dagnino, G., & Yang, G.-Z. (2019). Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation. Annual Review of Biomedical Engineering, 21(1). https://doi.org/10.1146/annurev-bioeng-060418-052502
  19. Riek, L. D. (2017). Healthcare Robotics. ArXiv:1704.03931 [Cs]. Retrieved from http://arxiv.org/abs/1704.03931
  20. Kappassov, Z., Corrales, J.-A., & Perdereau, V. (2015). Tactile sensing in dexterous robot hands — Review. Robotics and Autonomous Systems, 74, 195–220. https://doi.org/10.1016/j.robot.2015.07.015
  21. Choi, C., Schwarting, W., DelPreto, J., & Rus, D. (2018). Learning Object Grasping for Soft Robot Hands. IEEE Robotics and Automation Letters, 3(3), 2370–2377. https://doi.org/10.1109/LRA.2018.2810544
  22. Shortliffe, E., & Sepulveda, M. (2018). Clinical Decision Support in the Era of Artificial Intelligence. Journal of the American Medical Association.
  23. Attema, T., Mancini, E., Spini, G., Abspoel, M., de Gier, J., Fehr, S., … Sloot, P. M. A. (n.d.). A new approach to privacy-preserving clinical decision support systems. 15.
  24. Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P., Blake, P., Pecora, A., … Suh, K. S. (2015). Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. Journal of Clinical Bioinformatics, 5(1). https://doi.org/10.1186/s13336-015-0019-3
  25. Gianfrancesco, M. A., Tamang, S., Yazdany, J., & Schmajuk, G. (2018). Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Internal Medicine, 178(11), 1544. https://doi.org/10.1001/jamainternmed.2018.3763
  26. Kliegr, T., Bahník, Š., & Fürnkranz, J. (2018). A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. ArXiv:1804.02969 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1804.02969
  27. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. https://doi.org/10.1371/journal.pone.0174944
  28. Suresh, H., Hunt, N., Johnson, A., Celi, L. A., Szolovits, P., & Ghassemi, M. (2017). Clinical Intervention Prediction and Understanding using Deep Networks. ArXiv:1705.08498 [Cs]. Retrieved from http://arxiv.org/abs/1705.08498
  29. Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLOS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689
  30. Verghese, A., Shah, N. H., & Harrington, R. A. (2018). What This Computer Needs Is a Physician: Humanism and Artificial Intelligence. JAMA, 319(1), 19. https://doi.org/10.1001/jama.2017.19198

Twitter Weekly Updates for 2011-08-29

  • @AMEE_Online this is great, how do we go about claiming the year’s membership? #
  • RT @Jane_Mooney: Great game-based learning resources for educators from @judithway http://t.co/f1wyv1P #
  • Just registered for #amee2011 after spending 19 hours in transit. The world is smaller than it used to be but it could be smaller still #
  • @jane_mooney I’ll look out for u & your poster. If u want 2 chat I’d love to hook up. My PhD is on blended learning in clinical education #
  • @paulderoos Good luck with the free accommodation for #amee2011 I’d help you out if I could 🙂 #
  • Gearing up for #amee2011 where I’ll b presenting a systematic review on blended learning in clinical education. Let me know if u’ll b there #
  • @amcunningham Official AMEE & Medical Teacher twitter accounts are using #amee2011 #
  • @amcunningham no doubt there are good sessions, it’s just all a bit overwhelming right now. Trying to make some sense of the programme #
  • @amcunningham nothing official about hashtags, just assumed it’d be the full date, will use whatever the convention is 🙂 #
  • @amcunningham I’ve been looking at the presentation sessions for that period & nothing has grabbed me yet. Maybe I’ll come to your workshop #
  • @amcunningham Yes, I’ll be at #amee2011 starting to get excited about it now. We’ll definitely hook up 🙂 #
  • @amcunningham See you’re facilitating a workshop on social media at #amee2011 You know what level the session is aimed at? #
  • Announcing the Zotero 3.0 Beta Release http://t.co/EmDnU32 #

Twitter Weekly Updates for 2011-03-14

Using social networks to develop reflective discourse in the context of clinical education

My SAFRI project for 2010 looked at the use of a social network as a platform to develop clinical and ethical reasoning skills through reflective discussion between undergraduate physiotherapy students. Part of the assignment was to prepare a poster for presentation at the SAAHE conference in Potchefstroom later this year, which I’ve included below.

I decided to use a “Facebook style” layout to illustrate the idea that research is about participating in a discussion, something that a social network user interface is particularly well-suited to. I also like to try and change perceptions around academic discourse and do things that are a little bit different. I hate the general idea that “academic” equals “boring” and think that this is such an exciting space to work in.

 

I also included a handout with additional information (including references) that I thought the audience might find interesting, but which couldn’t fit onto the poster.

One of the major challenges I experienced during this project was that I didn’t realise how much time it’d take to complete. I’d thought that the bulk of my time would be used on building and maintaining the social network and facilitating discussion within in, but the assignment design (see handout) took a lot more effort than I expected. I had to make sure that it was aligned with the module learning objectives, as well as the university graduate attributes.

In terms of moving this project forward, I think that it might be possible to use a social network as a focus for other activities that might contribute towards a more blended approach to learning and clinical education. For example:

  • Moving online discussions into physical spaces, either in the classroom or clinical environment
  • Sharing and highlighting student and staff work
  • Sharing social and personal experiences that indicate personal development, or provide platforms for supportive engagement
  • Extensions of classroom assignments
  • Connecting and collaborating with students and staff from other physiotherapy departments, both local and international
  • Helping students to acquire skills to help them navigate an increasingly digital world

I think that one of the most difficult challenges to overcome as I move forward with this project is going to be getting students and staff to embrace the idea that the academic and social spaces aren’t necessarily separate options. Informal learning often happens within social contexts, but universities are about timetables and schedules. How do you convince a staff member that logging into a social network at 21:00 on a Saturday evening might be a valuable use of their time?

If we can soften the boundary between “social” and “academic”, I think that there’s a lot of potential to engage in the type of informal discussion I see during clinical supervision, and which students have reported to really enjoy. I think that the social, cognitive and teacher presences from the Community of Inquiry model may help me to navigate this space.

If you can think of any other ways that social networks might have a role to play in facilitating the clinical education of healthcare professional students, please feel free to comment.